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Abstract The explicit formula for the effective dielectric

constant of binary 0-3 composites (Poon and Shin, J. Mat. Sc.

39 (2004) 1277–1281) is extended into two explicit formulas

for the prediction of the elastic properties of macroscopically

isotropic 0-3 composites. By combining them with the ex-

plicit effective dielectric formula into a calculation scheme

(Wong et al., J. Appl. Phys. 90 (2001) 4690), we obtained

two new explicit formulas for the prediction of the d31 and

d33 values for binary 0-3 piezoelectric composites. These two

explicit formulas are applicable even when the inclusion vol-

ume fraction is high. Comparing with existing experimental

data, they are found to fit more favorably than those predicted

by Wong et al. and others. Also, being explicit makes these

formulas much easier to be embedded into other effective

property calculations for binary 0-3 composite materials.

Keywords Explicit formula . Effective piezoelectric

coefficients . 0-3 composites

Introduction

Theoretical and empirical models for the prediction of the ef-

fective piezoelectric coefficients of 0-3 composites have been

developed by many researchers [e.g. 1–4]. The models of Fu-

rukawa [1–3], Jayasundere [4] and Wong et al. [5] are three

typical approaches. In Furukawa’s model, both the inclusion
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and the matrix are assumed to be incompressible. When com-

pared with experimental results of d31of PZT/PVDF compos-

ites [3], Furukawa’s model shows good agreement with ex-

perimental values only for dilute suspension of the inclusions

(volume fraction φ less than about 0.3). The model developed

by Jayasundere does not fit with the d33 experimental data

of PbTiO3/P(VDF/TeFE) composites [6]. In addition, Jaya-

sundere model does not give correct limits when the volume

fraction of the inclusions, φ, tends to zero or tends to one.

For higher inclusion volume fractions, explicit expressions

are derived by Wong et al. [5]. Their derivation starts from

a single spherical inclusion problem, for which the associ-

ated elastic problem has already been solved by Goodier

[7]. The solution is adopted for the dilute suspension case,

assuming that the interactions between the inclusions can

be neglected. Explicit formulas of the effective piezoelectric

coefficients (d31 and d33) are then derived in terms of the di-

electric, elastic and piezoelectric properties of the inclusion

and the matrix material. The expressions obtained are then

extended for non-dilute suspension of inclusions by using

formulas for the effective dielectric constant, effective bulk

modulus and shear modulus that are known to be applica-

ble for non-dilute cases. When compared with experimental

data, their formulas give reasonably good fitting for higher

volume fractions.

As in practical applications of the piezoelectric 0-3 com-

posites, usually high volume fractions of the inclusions

are employed. Therefore it is the aim of this article to

derive explicit formulas for d31 and d33 effective piezo-

electric coefficients of the composites that give reason-

able predicted values even at high volume fractions of the

inclusions.

The following is the structure of this article. In Section 2,

the idea employed earlier (Poon and Shin [8]) for finding

an explicit formula for the effective dielectric constant of
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binary 0-3 composites is applied for treating elastic prob-

lems. This results in two explicit formulas for the effective

elastic coefficients. By incorporating them into the explicit

effective dielectric formula given in [8], and plugging all into

the scheme of Wong et al. [5], two explicit formulas for the

prediction of the effective piezoelectric d31 and d33 coeffi-

cients for binary 0-3 piezoelectric composites are obtained.

In Section 3, these two new formulas, when compared with

experimental data, are shown to fit more favorably than those

predicted by Wong et al. [5] and others, especially in the high

volume fraction region. The last section is the discussion and

conclusions section.

Theory

Effective dielectric constant

Poon and Shin [8] considered the single inclusion electrical

problem of a single dielectric spherical inclusion with dielec-

tric constant εi embedded in an infinite matrix with dielectric

constant εm . When an external electric field is applied along

the z-axis, and suppose Em is the electric field in the matrix

region far away from the inclusion, then the electric field Ei

inside the inclusion, is uniform and is parallel to Em [5]. The

relationship between the electric fields Ei and Em , and the

corresponding electric displacements Di and Dm is given by

[5]

Di − Dm = −2εm(Ei − Em) (1)

Defining δD as Di − Dm and δE as Ei − Em , it can be written

in the form:

δD = −2εmδE (2)

Poon and Shin [8] have shown that, one way to take into

account the interaction between the inclusions is to add an

extra term:

�D = −2εm�E + φ(εi − εm)〈Ei 〉 (3)

where �D ≡ 〈Di 〉 − 〈Dm〉, �E ≡ 〈Ei 〉 −〈Em〉
After some manipulation, the effective dielectric constant ε

of the composite is found:

ε = εm + φ(εi − εm)
1

φ + (1 − φ)
εi +2εm−φ(εi −εm )

3εm

(4)

where φ is the volume fraction of the inclusions.

Effective elastic coefficients

For elastic properties, we can, by analogy, replace the elec-

tric displacement D by the stress σ and the electric field E
by the strain e. For the single inclusion elasticity problem

of a single spherical inclusion having bulk modulus ki and

shear modulus μi in an infinite matrix having bulk modulus

km and shear modulus μm , subjected to a uniform external

stress along the z-axis, Goodier [7] has worked out the ana-

lytical solutions for the displacements and the stresses inside

the inclusion and in the matrix, in spherical coordinates. By

transforming Goodier’s solution to Cartesian coordinates, it

can be shown that

δσ1 = Aδe1 + Bδe2 + Bδe3

δσ2 = Bδe1 + Aδe2 + Bδe3

δσ3 = Bδe1 + Bδe2 + Aδe3

(8)

where

δσ j ≡ σi j − σmj , δe j ≡ ei j − emj ( j = 1, 2 or 3) (9)

Here the first subscripts i and m refer to the inclusion and

the matrix respectively, and the second subscripts 1, 2 and 3

refer to the x-axis, y-axis and z-axis directions, respectively.

A = 10

9
μm

(
− 3 + 2μm

km + 2μm

)
,

B = 1

9
μm

(
− 3 − 10μm

km + 2μm

)
(10)

Similar to the electrical case, when there are several in-

clusions inside the matrix, one way to take into account the

interaction between them is adding additional terms.⎛⎜⎝�σ1

�σ2

�σ3

⎞⎟⎠ =

⎛⎜⎝ A B B

B A B

B B A

⎞⎟⎠
⎛⎜⎝�e1

�e2

�e3

⎞⎟⎠

+ φ

⎛⎜⎝ C D D

D C D

D D C

⎞⎟⎠
⎛⎜⎝ 〈ei1〉

〈ei2〉
〈ei3〉

⎞⎟⎠ (11)

where �σ j ≡ 〈σi j 〉 − 〈σmj 〉, �e j ≡ 〈ei j 〉 − 〈emj 〉 (j = 1, 2

or 3)

〈x〉 denotes the volumetric average of the physical quantity

x over the respective material and

C ≡ (ki − km) + 4

3
(μi − μm),

D ≡ (ki − km) − 2

3
(μi − μm) (12)
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Since the 0-3 composite, as a whole, is an isotropic material,

its elastic behavior can be described by just two coefficients,

for example, the effective bulk modulus k and the effective

shear modulus μ. They are defined by the stress-strain rela-

tionship

⎛⎜⎝ 〈σ1〉
〈σ2〉
〈σ3〉

⎞⎟⎠ =

⎛⎜⎝ E F F

F E F

F F E

⎞⎟⎠
⎛⎜⎝ 〈e1〉

〈e2〉
〈e3〉

⎞⎟⎠ (13)

where

E ≡ k + 4

3
μ, F ≡ k − 2

3
μ (14)

Using Eqs. (8) to (14), and the following relationships,

〈σ j 〉 = φ〈σi j 〉 + (1 − φ)〈σmj 〉 j = 1, 2, 3 (15)

〈e j 〉 = φ〈ei j 〉 + (1 − φ)〈emj 〉 j = 1, 2, 3 (16)

the effective bulk modulus k and the effective shear modulus

μ of the composite can be found:

k = km

+ φ(ki −km)(km + 4
3
μm)

(1−φ)
[
km + 4

3
μm + (1−φ)(ki −km)

] + φ
(
km + 4

3
μm

) (17)

μ = μm

+
φ(μi −μm)

5μm (3km+4μm )

6(km+2μm )

(1−φ)
[

5μm (3km+4μm )

6(km+2μm )
+(1−φ)(μi −μm)

]+φ
5μm (3km+4μm )

6(km+2μm )

(18)

Effective piezoelectric coefficients

Wong et al. [5, 11] have given explicit formulas for the effec-

tive piezoelectric d31 and d33 coefficients of 0-3 composites:

d31 = φFE [(F⊥
T + F ||

T )d31i + F⊥
T d33i ]

+ (1 − φ)F E [(F
⊥
T + F

//

T )d31m + F
⊥
T d33m] (19)

d33 = φFE [2F⊥
T d31i + F//

T d33i ]

+ (1 − φ)F E [2F
⊥
T d31m + F

//

T d33m] (20)

where the “electric field factors” are

FE ≡ 1

φ

ε − εm

εi − εm
(21)

F E ≡ 1

1 − φ

εi − ε

εi − εm
(22)

and the “stress field factors” are defined to be

F⊥
T ≡ 1

φ

(
1

3

1
k − 1

km

1
ki

− 1
km

− 1

3

1
μ

− 1
μm

1
μi

− 1
μm

)
(23)

F//

T ≡ 1

φ

(
1

3

1
k − 1

km

1
ki

− 1
km

+ 2

3

1
μ

− 1
μm

1
μi

− 1
μm

)
(24)

F
⊥
T ≡ 1

1 − φ

(
1

3

1
ki

− 1
k

1
ki

− 1
km

− 1

3

1
μi

− 1
μ

1
μi

− 1
μm

)
(25)

F
//

T ≡ 1

1 − φ

(
1

3

1
ki

− 1
k

1
ki

− 1
km

+ 2

3

1
μi

− 1
μ

1
μi

− 1
μm

)
(26)

They have taken the dielectric constant ε in the electric

field factors as given by the Bruggeman formula [12]

εi − ε

ε
1
3

= (1 − φ)
εi − εm

ε
1
3
m

(27)

and the bulk k and shear μ modulus in the stress field factors

by the Hashin model [10].

Using the same scheme, but employing the new for-

mula (Eq. (4)) for the effective dielectric constant and the

new formulas (Eqs. (17) and (18)) for the effective elastic

coefficients, we obtained therefore two new explicit equa-

tions for the two effective piezoelectric coefficients d31 and

d33.

Comparison with experimental data

Effective elastic coefficients

Predictions of the effective bulk modulus and the effective

shear modulus using the two explicit formulas (17) and (18)

are compared with the experimental data given by Smith

[9]. The composite considered is a matrix of epoxy embed-

ded with glass spheres. The Poisson’s ratios of the glass

(νi ) and the epoxy (νm) are 0.23 and 0.394 respectively

and the Young’s moduli of the glass (Yi ) and the epoxy

(Ym) are 76.0 GPa and 3.01 GPa respectively. Figure 1

shows the comparison for the bulk modulus, in which we

have plotted predictions based on our model and the Hashin

model [10]. The bulk modulus of Hashin’s model is given

by

k = km + φ(ki − km)

1 + (1 − φ) ki −km

km+ 4
3
μm

(28)

At low volume fractions of the glass spheres, both

Hashin’s model and our model give good agreement with
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Fig. 1 Comparison of the effective bulk modulus predicted by this

work (Eq. (17)) and Hashin’s model (Eq. (28)) with experimental data

of Smith [9]

the experimental data. However, at higher volume fractions,

the Hashin model underestimates the effective bulk modulus

while our model still fits relatively well to the experimental

data.

Figure 2 shows the comparison for the shear modulus.

Hashin’s model gives lower bound μl and upper bound μu

as follows:

μl =μm

(
1+

15(1−νm)
(

μi

μm
−1

)
φ

7−5νm +2(4−5νm)
(

μi

μm
−(

μi

μm
−1

)
φ
))

(29)

μu = μm

[
1 +

(
μi

μm
− 1

)
B1

A1 + B1C1

φ

]
(30)

where

A1 ≡ 42
5μm

μm−μi

1−νm
φ(φ

2
3 − 1)2ϑ , B1 ≡ [(7 − 10νi ) −(7 −

10νm)ϑ]4φ
7
3 + (7 − 10νm)ϑ

C1 ≡ μi

μm
+ 7 − 5νm

15(1 − νm)

(
1 − μi

μm

)
+2(4 − 5νm)

15(1 − νm)

(
1 − μi

μm

)
φ

Fig. 2 Comparison of the effective shear modulus predicted by this

work (Eq. (18)), lower bound of shear modulus of Hashin model, μl

(Eq. (29)) and upper bound of shear modulus of Hashin model, μu

(Eq. (30)) with experimental data of Smith [9]

and

ϑ ≡ (7 + 5νi )μi + 4(7 − 10νi )μm

35(1 − νm)μm
(31)

At low volume fractions, both bounds of Hashin’s model

and our model give reasonable predicted values when com-

pared with the experimental data. However, when the vol-

ume fraction of the inclusions is higher, the lower bound of

Hashin’s model fails to give reasonable predictions, while its

upper bound and our model still show good agreement with

the experimental data.

Effective piezoelectric coefficients

Equations (19) and (20) calculated using our scheme, the

scheme adopted by Wong et al.’s paper [5] and other models

are compared with experimental data given by Furukawa [3]

and Zou et al. [6] (Figs. 3 and 4).

Figure 3 shows the d31 comparison for PZT/PVDF sys-

tem [3]. The Poisson’s ratios of the PZT inclusion and

the matrix are 0.3 and 0.4 respectively and the Young’s

moduli of the inclusion and the matrix are 58.7 GPa and
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Fig. 3 Predictions of the effective piezoelectric coefficient d31 by this

work (Eq. (19)), Wong et al.’s model [5] using lower and upper bounds of

shear modulus of Hashin [10] and Furukawa’s model [1]. Experimental

data are taken from [3] of Furukawa

2.52 GPa respectively. The dielectric constants are 1900

for the inclusion and 14 for the matrix. The d31 and d33

values for the inclusion are −180 pC/N and 450 pC/N re-

spectively. For dilute suspension cases, our scheme and the

scheme of Wong et al. using μu show similar performance,

while the Furukawa model underestimates the piezoelec-

tric coefficient. At higher volume fractions, the Furukawa

model fails obviously, while the other schemes show similar

performance.

Figure 4 shows d33 comparisons of different models with

the experimental values for PbTiO3/P(VDF/TeFE) system

[6], in which experimental data are available only at high

volume fractions. The Poisson’s ratios of the inclusion and

the matrix are 0.22 and 0.4 respectively and the Young’s

moduli of the inclusion and the matrix are 126.7 GPa and

2.81 GPa respectively. The d31 and d33 values for the inclu-

sion are −9.5 pC/N and 94 pC/N respectively. The dielectric

constants are 150 for the inclusion and 6 for the matrix. In

this case, almost all experimental data fall within the bounds

of Wong et al. [5] and our scheme fits reasonably good to the

data. On the other hand, the Jayasundere model [4] obviously

overestimates the coefficient.

Fig. 4 Predictions of the effective piezoelectric coefficient d31 by this

work (Eq. (19)), Wong et al.’s model [5] using lower and upper bounds

of shear modulus of Hashin [10] and Jayasundere’s model [4]. Experi-

mental data are taken from [6] of Zou et al.

We would like to emphasis here that the Wong et al. [5]

scheme using μl and μu provide the lower and upper bounds

for the prediction of the effective piezoelectric coefficients

of the composite. As shown in these comparisons, we do not

know beforehand which bound gives better predicted values.

In this sense, our model has the merit that it always gives

reasonable predictions, no matter the volume fraction is low

or high.

Discussion and conclusions

By using the new dielectric constant formula given by Poon

and Shin [8] and the new bulk and shear modulus formulas

derived in this work, we obtained two new explicit formulas

for the effective piezoelectric coefficients, d31 and d33. For the

dilute suspension cases, they give values similar with other

theoretical models. However, at higher volume fractions, they

give better predictions when compared with typical experi-

mental data available in the literature.

In this article, we have derived two explicit formulas for

the effective bulk modulus and the effective shear modulus

of 0-3 composites, based on Goodier’s solution [7] and the
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approach used in the article of Poon and Shin [8]. The same

idea will next be applied to find explicit formulas for the

effective elastic coefficients of 1-3 composite materials.
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